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Abstract

This study explored the use of body posture kinematics derived from wearable inertial sensors to 

estimate force exertion levels in a two-handed isometric pushing and pulling task. A prediction 

model was developed grounded on the hypothesis that body postures predictably change 

depending on the magnitude of the exerted force. Five body postural angles, viz., torso flexion, 

pelvis flexion, lumbar flexion, hip flexion, and upper arm inclination, collected from 15 male 

participants performing simulated isometric pushing and pulling tasks in the laboratory were used 

as predictor variables in a statistical model to estimate handle height (shoulder vs. hip) and force 

intensity level (low vs. high). Individual anthropometric and strength measurements were also 

included as predictors. A Random Forest algorithm implemented in a two-stage hierarchy 

correctly classified 77.2% of the handle height and force intensity levels. Results represent early 

work in coupling unobtrusive, wearable instrumentation with statistical learning techniques to 

model occupational activities and exposures to biomechanical risk factors in situ.

INTRODUCTION

Direct measurement of external force demands in ambulatory material handling tasks (such 

as pushing, pulling, carrying with different load levels) in situ remains a challenge for 

ergonomics analysis. These force estimates typically get used as inputs to biomechanical 

models for estimating joint loads and assessing injury risk. Towards assessing external loads 

and kinetics in ambulatory tasks, previous studies have used pressure mapping insoles 

(Cordero, Koopman, & Van Der Helm, 2004) and instrumented force shoes (Faber, Kingma, 

Schepers, Veltink, & Van Dieen, 2010) to measure ground reaction forces, instrumented 

hand gloves to measure grasp forces (Castro & Cliquet, 1997), and electromyography 

(EMG) to measure muscle activity thereby estimating the magnitude of force exerted 

(Theado, Knapik, & Marras, 2007). Such methods require trained ergonomists and can be 

cumbersome and obtrusive.

Motion analysis systems comprising body-worn inertial sensors have been used for 

measuring spatio-temporal gait parameters (Aminian, Najafi, Büla, Leyvraz, & Robert, 

2002), joint kinematics (Bernmark & Wiktorin, 2002; El-Gohary & McNames, 2012) and 

for material handling activity classification (Kim & Nussbaum, 2014). Recent advances in 

biomechanical analysis techniques have also investigated estimating of joint loads during 

normal walking using just kinematic data from inertial sensors (Karatsidis et al., 2017).
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In this paper, we explore the potential use of inertial sensor-based posture kinematics and 

statistical learning techniques to predict external load conditions, specifically normalized 

push and pull force levels. Prior ergonomics research has shown that, given certain work 

constraints, body posture is organized systematically and predictably in response to external 

force demands (e.g., Hoffman, 2008; Lim, Case, & D’Souza, 2016). We developed and 

tested a statistical prediction model with a limited set of posture variables from inertial 

sensors and anthropometry variables to estimate normalized high vs. low force levels and 

location of force exertion (shoulder vs. hip height) during pushing and pulling task. We 

focus on the Random Forest technique which yielded the highest prediction accuracy from 

among five statistical learning techniques that were evaluated.

METHODS

Study Participants

The study recruited fifteen healthy right-handed male individuals aged between 18 to 35 

years old from the university population. Gender and age restriction were applied to 

minimize variability in task postures. Average (SD) age, height, and weight of participants 

were 23.9 years (3.7 years), 1762mm (49mm), and 69.55kg (9.30kg) after excluding data 

from three participants due to instrumentation error. Prior to participation, participants 

provided written informed consent and were screened for pre-existing back injuries or 

chronic pain with a body discomfort questionnaire adapted from the body mapping exercise 

developed by NIOSH (Cohen, 1997). The study was approved by the university’s 

Institutional Review Board.

Experiment Procedure

The experiment had participants exert an isometric horizontal force on an instrumented 

handle (Figure 1) to achieve and maintain a required target force level (±5%) for a 3s 

interval in 36 counterbalanced task conditions. Task conditions were varied by manipulating 

four task parameters, viz., handle height, force intensity, handedness, and force direction. In 

this paper, we focus on two of the task parameters, i.e., handle height (hip vs. shoulder level) 

and force intensity (low vs. high). The low-level force intensity was set to 25% and the high-

level to 75% of the participant’s two-handed maximum push exertion (MVE; Hoffman, 

2008) measured at hip height and averaged over two trials.

Data Processing

During the experiment, body posture kinematics were obtained using four commercial data-

logging IS devices (YEI Technology, Inc.) attached over the sixth thoracic (T6) vertebra, 

low-back (L5/S1), lateral aspect of the right upper arm, and lateral aspect of the right thigh 

using customized Velcro straps (Figure 1). The IS devices recorded triaxial accelerometer, 

gyroscope, and magnetometer data at 100-Hz sampling frequency. The data was filtered 

using a second-order low-pass zero-lag Butterworth filter with a 2-Hz cut-off frequency. 

Three-dimensional segment orientations using IS data were computed using a custom 

algorithm implemented in MATLAB R2016b (The MathWorks Inc.) and averaged over the 

3s task duration (for details see Lim et al., 2016).
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Statistical Data Analysis

Variable selection—Three segment postural angles (viz., torso flexion, pelvis flexion, and 

right upper arm inclination) relative to the reference posture (T pose) and two joint angles 

(lumbar flexion and right hip flexion) were selected as potential predictor variables. 

Nineteen anthropometric and strength measurements were also included as predictors. Tests 

for multicollinearity (i.e., correlation coefficient > 0.90) resulted in 13 variables being 

excluded from further analysis.

The final set comprised eleven variables, viz., five posture variables: torso flexion (TF), 

pelvis flexion (PF), right upper arm inclination (UA), lumbar joint flexion (LF), and right 

hip flexion (HF), and six person variables: stature, weight, grip strength (right-hand), push 

MVE, L5/S1 to floor height, and Greater Trochanter to floor height.

Statistical model development—A preliminary analysis was conducted comparing five 

statistical classification techniques, viz., multinomial logistic regression, linear discriminant 

analysis, classification and regression trees, random forest, and naïve bayes in predicting the 

external force level as a categorical variable with four classes (high force at shoulder height, 

low force at shoulder height, high force at hip height, and low force at hip height). Among 

these techniques, the Random Forest had the highest prediction accuracy when estimating 

the external load level and is the focus of this analysis.

Random Forest (RF; Breiman, Friedman, Olshen, & Stone., 1984) is a tree-based statistical 

learning technique that explores the relationship between a response variable and multiple 

predictor variables by growing recursive binary partitioning at the nodes of the tree. In 

contrast to in the classification and regression trees which grow and prune a single tree for 

prediction, a RF evaluates hundreds of trees with subsets of predictor variables chosen 

randomly from the full set and averages the prediction result to obtain one final model (Liaw 

& Wiener, 2002).

Two different types of RF algorithms were implemented to predict the four classes (Figure 

2). Model-1 was a multiclass prediction model where the algorithm classifies four response 

classes at once. Model-2 was a two stage hierarchical model comprising a first binary 

classification model for predicting handle height, and a second stage binary classification 

model for predicting the force intensity level given handle height. Model-2 was proposed 

based on prior empirical studies which indicate that changes in handle height induce a 

greater change in body posture compared to manipulations in the force intensity level (Lim 

et al., 2016). Based on the prediction result for handle height from the first stage, the dataset 

was split into two groups and then subjected to a second stage model for predicting the force 

intensity level. Model parameters were set as the same for Models 1 and 2, namely, the 

number of randomly chosen predictors at each split was set as three, and the number of trees 

for each model was set as 50.

Model Performance—A holdout cross validation was performed by randomly assigning 

90% of the data as the training set and the remaining 10% as the testing set. This was 

repeated 20 times for both models. Model performance was evaluated by comparing the 

average (S.D.) prediction accuracy (i.e., correct prediction vs. misclassifications) between 
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Models 1 and 2. All statistical computations were carried out in the R Statistical Package v.

3.3.1 (R Core Team, 2016).

RESULTS

Model Comparisons

Model-1: multiclass prediction—The average (S.D.) prediction accuracy of the 

multiclass model was low at 27.2% (9.4%) suggesting that predicting the force intensity and 

location of force application simultaneously may be challenging.

Model-2: hierarchical prediction—The second model was built by having two 

sequential binary classification models as described in Figure 2. The average (S.D.) 

prediction accuracy of the overall prediction model was 77.2% (4.4%). Classification on 

handle height alone was 96.6% (2.1%) accurate on average (S.D.), while the prediction on 

force intensity was 80.1% (7.8%) accurate. This finding suggests that changes in body 

kinematics due to the force intensity levels may be subtle and not distinguishable when the 

data is aggregated over handle height, but is more meaningful when posture changes are 

compared at the same handle height level. Postural changes between force intensity were 

greater when the handle height was set at shoulder height, and resulted in a higher prediction 

accuracy (81.5%) compared to hip height (78.6%).

Results from a t-test confirmed that the hierarchical model (Model-2) outperformed the 

multiclass model (Model-1) in terms of greater prediction accuracy (t = 21.67, dof = 26.93, p 
< 0.001) between holdout testing. The hierarchical Model-2 also showed smaller variance in 

prediction accuracy (S.D. of Model-1 = 9.4% vs. Model-2 = 4.4%) suggesting greater 

stability.

Variable Importance

The relative importance of different variables comprising the hierarchical model (Model-2) 

was examined by calculating the Gini impurity Index (Strobl, Boulesteix, Zeileis, & 

Hothorn, 2007), which is the average impurity at a data partition across all classes of the 

response variable. A greater decrease in the Gini Index including vs. excluding a particular 

predictor variable from the model suggests a greater importance of that variable.

Figure 3 shows the top-five important variables in each stage of the final hierarchical model 

by plotting the relative importance (%) of each variables in the model. The relative 

importance was calculated as a relative proportion of mean decrease in Gini Index. Torso 

flexion and pelvis flexion angles were the most important predictors when classifying handle 

height (Figure 3-A).

All five postural angles were almost equally important when predicting the force intensity 

level at the hip handle height (Figure 3-B). Pelvis flexion was relatively more important than 

other postural angles when predicting the force intensity level at the shoulder handle height 

(Figure 3-C). These differences in variable importance between the stage-2 sub-models 

suggest a need for predicting force exertion levels specific to handle location and not 

aggregated across handle height conditions.
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DISCUSSION AND CONCLUSIONS

This study was intended as an initial step to explore the potential of using inertial sensor-

derived posture kinematics for load prediction. Understandably, the resulting prediction 

model is not yet generalizable for predicting pushing and pulling force levels across different 

worker and task conditions due to its small sample, constrained task conditions, and limited 

number of sensors. Nevertheless, the statistical prediction models presented indicate that a 

reasonably accurate binary classification of the exerted hand force levels during two-handed 

pushing and pulling task can be made solely from inertial sensor-derived posture kinematics. 

Further, this suggests the potential of using inertial-sensor based force prediction models 

when direct measurement of forces may be problematic or obtrusive.

A hierarchical approach to statistical modeling significantly improved the prediction 

accuracy compared to predicting multiple response classes at once. This result underscores 

the importance of empirical knowledge about adaptations in body posture in response to 

external force demands for developing efficient hierarchies.

The relative importance of different variables in the predictive model also provides insight 

into optimal placement of inertial sensors for posture analysis. For instance, if the pushing 

and pulling exertions are known to be performed at a fixed handle height in the workplace, 

then two inertial sensors could suffice (i.e., at T6 and L5/S1). Regardless of the handle 

height, the three most informative sensor attachment locations were at L5/S1, T6, and the 

right thigh. This information could serve as useful guidance about optimal placement of 

body-worn inertial sensors for obtaining the most informative postural kinematics with a 

minimal set of body-worn sensors.

In this analysis, the anthropometry and strength variables were found to be less important 

compared to posture variables since the response variable consisted of normalized force 

levels. We expect a greater contribution of these variables if predicting absolute force 

magnitudes, or if using statistical prediction models where fixed effect variables (e.g., handle 

height, force level) and random effect variables (e.g., anthropometry, strength measures) are 

treated differently as in a mixed effects model (e.g., RE-EM tree; Sela & Simonoff, 2012). 

Either approach would require a larger sample size with diverse demographic and 

anthropometry characteristics and is the focus of future work.
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Figure 1. 
Schematic representation of the experiment apparatus and instrumentation showing 

anatomical reference locations for the inertial sensors attachment.
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Figure 2. 
Structural differences in Model-1: Multiclass prediction with four classes as the response 

variable (left-panel) and Model-2: Hierarchical structure (right-panel) where handle height is 

classified at the first stage and then force intensity. Prediction accuracy at each stage is noted 

under each sub-model (denoted as an oval), and the overall prediction accuracy at the bottom 

of the panel.
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Figure 3. 
Graphs showing the top-five important variables in each stage of the final hierarchical 

Model-2 (A: handle height at hip vs. shoulder, B: force intensity at hip handle height, C: 

force intensity at shoulder handle height) by plotting the mean decrease in Gini Index, a 

measure of relative importance (%) when the corresponding predictor variable is dropped 

from the model. A greater relative importance suggests greater importance of the predictor 

variable.
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